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Abstract 

Conjugate natural convection heat transfer from a vertical plate has been investigated analytically and experimentally. 
Assuming the existence of vertically averaged interfacial temperature between plate and fluid, it is shown that there is a 
unique nondimensional parameter to characterize the problem. The interfacial temperature is obtained as a root of 5th 
order polynomial for laminar natural convection, and it is presented as a function of the conjugate parameter. For 
turbulent convection it is also shown that the polynomial becomes 4th order. A simple expression for the average heat 
transfer is given as a function of conjugate parameter and the apparent Rayleigh number defined by an overall 
temperature difference. An experiment, using a water vessel with a heating plate on a side wall, was carried out in order 
to test a proposed theory for the heat transfer. Three different materials, copper, stainless steel and ceramics, were used 
as a conductive slab. The measured average heat transfer rates are in good agreement with the theory. 0 1998 Elsevier 
Science Ltd. All rights reserved. 

Nomenclature 
A heat transfer area of slab 
a slab thickness 
C constant in heat transfer correlation 
g gravitational acceleration 
H slab height 
k thermal conductivity ratio, and also thermal con- 
ductivity of slab or fluid with subscripts ‘s’ and ‘T 
Nu average Nusselt number 
Pr Prandtl number 
Q dissipated electric power 
Ra Rayleigh number 
T temperature 
y vertical coordinate 
z nondimensional temperature ; z = @‘I3 or z = B”4. 

Greek symbols 
CI thermal diffusivity of fluid 
/I volumetric thermal expansion coefficient 
6 thermal boundary layer thickness 
0 nondimensional temperature 
1 geometric aspect ratio 

*Corresponding author. 

v kinematic viscosity 
cr nondimensional conjugate parameter. 

Subscripts 
b slab-fluid interface temperature 
H heated surface of slab 
C cold fluid 
s slab 
f fluid. 

1. Introduction 

Natural convection from a heated vertical plate is one 
of the most basic configurations that arise in free con- 
vection heat transfer problems. Although an isothermal 
condition of the heated plate is commonly assumed for 
evaluating the local and average heat transfer coefficients 
and the associated convecting fluid motion, the condition 
cannot be always realized in reality. The constant tem- 
perature condition of the heated plate is true only when 
the solid thermal conductivity is much greater than that 
of fluid. In general, however, this condition cannot be 
satisfied, and the fluid-solid interfacial temperature is 
only determined by a balance between the thermal resist- 
ance of fluid and that of solid plate or slab. Since the 
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thermal resistance of fluid adjacent to the plate depends 
upon the thickness of thermal boundary layer formed 
along the vertical plate or slab, it cannot be prescribed 
beforehand. Rather, the solid-fluid interfacial tem- 
perature is obtained as a part of the solution of con- 
duction-convection conjugated problem. 

Conjugate heat transfer problems arise in many prac- 
tical applications ; one of such examples demonstrates a 
critical nature of this problem in modern key-tech- 
nologies. In the mid-seventies in the piping systems of 
nuclear reactors it has been ascertained that natural cir- 
culation induces thermal stresses in the pipe walls and 
lead to critical structural damage [ 11. In these situations 
the thermal stresses induced depend on the temperature 
field within the solid wall, which is simply a result of 
thermal coupling between two adjacent media, fluid and 
solid wall. There have been several works on this con- 
vection-conduction coupling. Notably, heat transfer 
enhancement by extended surface, such as fins, is one 
example that falls into this category and has been inves- 
tigated extensively (see Holman [2] and Bejan [3], for 
instance). Kelleher and Yang [4] worked on a heat trans- 
fer problem from a vertical slab heated by internal heat 
generation. Zinnes [5] studied a case where a localized 
heat generation is imbedded in a vertical plate. Rotem 
[6] worked on a conjugate natural convection from a 
horizontal cylinder. A similar problem has been numeri- 
cally investigated recently by Kimura and Pop [7]. The 
latter also provided an approximate analytical solution 
for the average boundary temperature and the average 
heat transfer coefficient, which is extremely easy to evalu- 
ate, but accurate enough for most engineering appli- 
cations. Further Lock and Ko [S] looked at a heat trans- 
fer problem between two fluid reservoirs at different 
temperatures when they are partitioned by a conductive 
wall. Later Anderson and Bejan [9] developed an ana- 
lytical solution regarding heat transfer and convecting 
fluid motion, which is based on the Oseen type approxi- 
mation proposed by Gill [lo]. The same problem was also 
investigated theoretically and experimentally by Viskanta 
and Lankford [ 111. 

Probably a most relevant work to the present one has 
been first advanced by Miyamoto et al. [ 121 who provided 
both experimental and numerical results and an ana- 
lytical solution valid for a boundary layer regime along 
a heated vertical plate either by constant temperature or 
by constant flux. In a conjugated heat transfer problem 
a difficulty arises when one matches a conductive solution 
in the vertical plate and a nonlinear convection solution 
in the fluid region at the interfacial boundary. They over- 
come this difficulty by approximating the interfacial tem- 
perature as a polynomial of vertical coordinate variable. 
Subsequently, Timma and Padet [13], and Pozzi and 
Lupo [14] developed analytical solutions by assuming a 
thin heated slab so that conduction within the solid is 
one-dimensional. Merkin and Pop [15] have concluded 

that the thin plate approximation only leaves the Prandtl 
number as a relevant nondimensional parameter in the 
conjugate natural convection problem. The most general 
case of conjugate natural convection, however, must 
include both finite thickness and length of the heated 
plate as relevant parameters. From this argument Vyn- 
nycky and Kimura [ 161 made a most general formulation 
and provided both local and average heat transfer results 
when a vertical plate is heated from the behind at constant 
temperature. It should be mentioned that the solution by 
Vynnycky and Kimura [ 161 does not require any approxi- 
mation on the interfacial boundary temperature profile. 

Despite a rather substantial body of publications 
regarding conjugate natural convection along a vertical 
plate or slab, experimental work is very limited. Only a 
paper by Miyamoto et al. [12], which provides a set of 
experimental heat transfer data when the plate is heated 
by constant flux and the heat is transferred to the adjacent 
air (Pr = 0.7) comes to the present authors’ mind. On 
the other hand, Vynnycky and Kimura [16] proposed 
easily-obtainable formulae for the average interfacial 
boundary temperature and the average Nusselt number. 
The purpose of the present paper, therefore, is two-fold ; 
one is to provide a conjugate Nu-Ra correlation when 
the plate or slab is heated from behind by a constant 
temperature and facing to a reservoir filled with water 
(Pr = 7) and the other is to test a simple theory on 
the average heat transfer characteristics developed by 
Vynnycky and Kimura [ 161. 

2. One-dimensional approximate analysis 

2.1. Laminarflow regime 

It is a well established fact that a thin thermal boundary 
layer is formed along the heated vertical plate when the 
Rayleigh number is large. Therefore, it can be postulated 
the existence of a vertically averaged temperature field, 
which is then used to capture a major feature of the 
temperature field and the resulting heat transfer rate. We 
illustrate a physical model of the present problem and its 
coordinate system in Fig. 1. A heat conductive slab is 
positioned vertically and heated from behind at a con- 
stant temperature Tn. The other side of the slab is facing 
to a fluid reservoir of constant temperature T,. The slab 
is sandwiched between two perfectly-insulated plates, and 
its upper and lower surfaces are, therefore, thermally 
insulated. The vertical and horizontal dimensions of the 
slab are Hand a, respectively. The thermal conductivities 
of the slab and the fluid are k, and kf. At steady state we 
have a thermal boundary layer developed next to the 
conductive slab. The thickness of the boundary layer is 
denoted by 6 in the figure. Defining the vertically-aver- 
aged solid-fluid interface temperature as 
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Fig. 1. Schematic diagram of conjugate natural convection from 
a vertical slab. 

(1) 

we can write a one-dimensional heat balance at the inter- 
face boundary. 

&CT, - TIJ W’b - Tc) =- 
a 6 . 

In equation (2) linear temperature profiles within the 
slab and the thermal boundary layer are assumed. The 
thermal boundary layer thickness 6 can be related with 
the Rayleigh number Ra through a heat transfer cor- 
relation for a vertical heated plate when the Prandtl num- 
ber Pr is large ; 

6/H = Cm’ &-‘I4 (3) 
where C is a constant whose value is C = 0.671, and Ra 
is defined by an actual temperature difference to drive 
convection T,,- Tc and the slab height H (for example, 
see Bejan [3]). It should be noted that the boundary layer 
thickness 6 does not measure the real thermal boundary 
layer thickness, rather it reflects a fictitious value that 
correctly measures a mean heat transfer rate when a linear 
temperature profile is assumed within the boundary layer. 
Equation (2) may be put in a dimensionless form by 
dividing through the maximum temperature difference 

within the system T, - T,, and substituting equation (3) 
for 6 

k,(l-0) kf~si4CRa”4 
p= 

u H (4) 

where 0 is the dimensionless interface temperature 
defined by 

T,-Tc e=- 
T,--T,’ (5) 

Equation (4) is quintet polynomial equation for z = @‘I“, 
and it should be noted that Ra in equation (4) is the 
apparent Rayleigh number defined by an overall tem- 
perature difference TH - Tc. Therefore, we obtain a quin- 
tet algebraic equation for z with a single parameter 6. 

az5+z4-1 = 0 (6) 

where 

(7) 

The c is a measure of thermal resistance of the solid slab 
relative to a neighboring fluid. Equation (6) does not 
possess a closed form solution, although it is possible to 
obtain the properties of the solution before finding a root 
numerically. First, asymptotic analysis indicates that 

(3% l-a, wheno<< 1 (8) 

0 z 0-4’5, when (r >>_ 1. (9) 

Since equation (6) is,a Sth-order polynomial, there are 
five roots all together. However, the equation has only 
two turning points, and it is obvious that it has three real 
roots. Furthermore, since it has a negative value at z = 0 
and a positive one at z = 1, we can deduce that only one 
of three lies in the range 0 < z < 1, also considering the 
fact that the first derivative is positive in this range. 

In the light of this analysis, the unique solution for the 
interfacial temperature as a function of o can be found 
easily using a Newton-Raphson technique. The results 
are shown graphically in Fig. 2. As expected from equa- 
tions (8) and (9), the interfacial temperature decreases 
monotonically as o increases. Particularly when (r < 10, 
it decreases sharply from 1 to around 0.2, and after that 
the decay is less dramatic. 

Once the solid-fluid interfacial temperature is 
obtained, the mean Nusselt number can be calculated 
from a correlation for a heated vertical plate. Therefore, 
the mean Nusselt number may be written as 

MA = CRa’i405’4. (10) 

It should be noted that the Rayleigh number is again an 
apparent one as those in equations (4) and (7) and the 
Nusselt number is defined by 

q”H 

Nu = k,( T, - T,-) 

where q” is a mean heat flux per unit area. 

(11) 
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Fig. 2. Dimensionless slabfluid interface temperatures for both 
laminar and turbulent flows as a function of 6. 

The case for Pr << 1, and Ra Pr >> 1 proceeds in a simi- 
lar way, except that the boundary layer thickness now 
measured by 

6/H = Cm’(RaPr)m’,4. (12) 

Therefore, a unique parameter g for Pr << 1 becomes 

K( Ra Pr) ’ .‘4 
CT= 

k (13) 

where C = 0.8 in this case (see Bejan [3]). Otherwise, 
the former argument is exactly applicable for the small 
Prandtl number problem. 

2.2. Turbulentjow regime 

At a sufficiently large Rayleigh number the convecting 
flow eventually becomes turbulent. For a heated vertical 
plate the transition from laminar flow to turbulence takes 
place around Ra = 109. However, it should be noted that 
this transition criteria is for an isothermal vertical plate. 
For the present problems the critical Rayleigh number 
may be different. In the presence of turbulent in the 
boundary layer the heat transfer rate has been measured 
experimentally and correlated as a function of Ra. For a 
fluid of Pr >> 1 the following equation has been proposed 

a/H= C-1 Ra-‘!i (14) 

with C = 0.15 (see Bejan [3] and Churchill and Chu [17]). 
Exactly the same procedure as in the laminar case may 
be carried out for turbulent convection. A polynomial 
equation for turbulent case, corresponding to equation 
(6) for laminar flow, now becomes 

crz4+z3-1 = 0 (15) 

where the dimensionless interfacial temperature is given 

by (3 = z3. The conjugate parameter r~ for turbulent con- 
vection is defined by 

1C Ra' ‘j 
O=k. (16) 

Equation (15) shares a similar property with equation 
(6) ; there is a unique root lying in the range of 0 < z < 1 
for any value of 0. The numerical values of 0 obtained 
by solving equation (15) are plotted in Fig. 2 together 
with laminar case. The interface temperature mon- 
otonically decreases as 0 increases ; the trend is very close 
to that for laminar convection. The mean Nusselt number 
is calculated using equation (17) in the same way as it is 
for laminar flow, 

Nu = CRa”? Q4’?, (17) 

The definitions of 0 and the formulae to compute the 
average Nusselt numbers for laminar and turbulent con- 
vection, and for large and small Prandtl number cases 
are summarized in Table 1. 

3. Experimental setup and procedure 

An experimental apparatus was built in order to exam- 
ine the above theoretical development. A water vessel 
whose dimensions are 300 x 300 x 500 mm was built with 
acrylic plates, which serves as a fluid reservoir. A heated 
slab is placed at the midheight on one of the 500 mm- 
high side walls. The conductive slabs have the area dimen- 
sion of 70 mm (height) x 200 mm (width) and a thickness 
of 21 mm. The vertical dimension of the slab essentially 
restricts the attainable maximum Rayleigh number, 
which appears to be an order of 10” (based on the tem- 
perature difference Tb - Tc). Therefore, convective flows 
are expected to be laminar over the heated surface. Three 
different conductive materials are used; they are copper 
(k, = 386 W m-’ Km’), stainless steel (k, = 16 W m-’ 
Km’) and ceramics (k,= 1.7 W mm’ K-l). Except for the 
copper slab they are heated by two electric heaters via a 
6 mm copper plate in order to maintain the heated surface 
at a constant temperature. The temperature field is 
measured by thermocouples. All together eleven thermo- 
couples are mounted in the heated slab in order to moni- 
tor the temperatures at both surfaces. The temperature 

Table 1 
Conjugate parameters and average Nusselt numbers 

Pr 0 C NlA 

Laminar Pr >> 1 AC Ra”4/k 0.67 C Ra’!4 O54 
Pr << 1 E.C(Pr Ra)‘14/k 0.8 C( Pr Ra) If4 fIs;4 

Turbulent Pr >> 1 AC Ra”3 k 0.15 CRa”3 p3 
Pr << 1 IC(Pr Ra)“‘/k 0.19 C(Pr Ra)“‘@’ 
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of water is also measured by a thermocouple probe 
mounted on a rack-pinion positioning system. A schematic 
in Fig. 3 illustrates the water vessel and a layout of the 
heated slab. 

The heat transfer rate is measured by electric power 
dissipated at electric heaters mounted behind the slabs. 
The heat transfer ral:e is presented by a Nusselt-Rayleigh 
correlation, where the Rayleigh number again refers to 
the apparent Rayleigh number based on overall tem- 
perature difference. The mean Nusselt number is defined 
by equation (11) and measured from an average heat flux 
per unit area through the heated slab, 

QH 
N” = Akf(TH - T,) (18) 

where Q and A are a dissipated power at the electric 
heaters and the heat transfer area of the slab, respectively. 

Since there must be a leakage of heat, particularly 
from behind the heaters through insulation material, we 
conducted a series of tests in order to estimate the heat 
leak by supplying a very small amount of power to the 
heaters for the water-drained vessel, where the surface of 
the conductive plate is also insulated by glass wool. The 
temperature rise at (1 steady state is then monitored for 
several different input powers, and the dissipated powers 
are plotted against I.he temperature differences between 
the plate and the ambient room temperature. It appears 
that the heat leak estimated increases as the conductive 
plate temperature be:comes large, but it is roughly within 
an order of l&15% of the total power dissipated at the 
heaters. 

A flow visualization was also conductive in order to 
look at fluid dynamic processes during a steady con- 
vective state. A pH indicator method demonstrated by 

30 cm 

Baker [18] for slow fluid motion was applied to the pre- 
sent experiments. For the visualization purpose the vessel 
was filled with aquatic solution of thymalblue, and 0.05 
mm-diameter stainless steel wires are put straight in the 
mid-vertical plane. After steady convection is established, 
a d.c. voltage is impressed between the wires, one (posi- 
tive) of which colors the neighboring fluid dark-blue. The 
colored fluid are then swept by moving fluid, and forms 
streak lines. The method was successfully applied to 
visualize convecting flow structures in the present water 
vessel. 

4. Experimental results 

4.1. Heat transfer 

As described above the heat transfer rates were mea- 
sured by monitoring powers dissipated by electric heaters. 
In order to examine a performance of the experimental 
apparatus we first used a copper plate as a conductive 
slab. The surface temperatures of the slab are measured 
by imbedded thermocouples at positions 1 mm away 
from the front boundary. After the heater was switched 
on, the slabfluid boundary temperature rise was moni- 
tored every one minute. A steady state was achieved in 
20-40 min depending upon the Rayleigh number. The 
Rayleigh number and the Nusselt number are defined by 
temperature difference between the slab surface and the 
directly opposing vessel wall. Due to a large heat con- 
ductivity of copper uniform temperatures at the surface 
were observed. The measured nondimensional heat trans- 
fer rates (Nusselt number) are plotted against the Ray- 

I---=-- 
Copper Plate 

20 cm 

83 E 
-” 1 r. 

Fig. 3. Sketch of experimental apparatus. 
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leigh number together with the similarity solution (Bejan 
[3]) in Fig. 4. As it is seen in the figure, the experimental 
results agree well with the similarity solution : the differ- 
ences between the two fall within 12%. This proves that 
the experimental apparatus works properly for the pur- 
pose of heat transfer measurements. 

Next we installed alternatively stainless steel and cer- 
amics as a conductive slab in order to realize a con- 
duction-convection conjugate heat transfer problem. 
Since those materials have lower thermal conductivities 
than copper, it is expected that the heat transfer rates 
decrease significantly, and the slabfluid boundary tem- 
peratures also diminish. A steady state was determined 
again by monitoring a slab-fluid boundary temperature. 
A time required for steady state is generally greater than 
that for copper, and takes about 14 h, reflecting smaller 
thermal diffusivities of stainless steel and ceramics. When 
a required period of time for steady state became greater 
than 1 h, a slight temperature rise at midheight of the 
opposing wall was observed. The opposing wall tem- 
perature also fluctuates by a room temperature variation 
with time. However, a temperature difference between 
the two kept a nearly constant value once a steady state 
was established. 

The Nusselt-Rayleigh correlations obtained for the 
latter two cases are shown in Figs. 5 and 6 together with 
theoretical predictions based on the one-dimensional the- 
ory developed in the preceding section. Again it is clear 
that the experimental results agree well with the theory : 
the differences are within 16%. The ceramic slab drops 
the heat transfer rates by a factor of 10 in comparison 
with the copper case, and the stainless steel lies some- 
where between the two. But, considering the fact that 
ceramics is more than 200 times less thermally conductive 
than copper, the factor of 10 obtained for the heat trans- 
fer difference between the two is small, and it indicates 
that the convective process gives a significant contribution 
for determining the overall conjugate heat transfer rate. 

The slabfluid boundary temperatures (surface tem- 
perature) are also measured by nine thermocouples that 

Ra 

Fig. 4. Average Nusselt number against Rayleigh number for 
copper slab ; (similarity solution vs. experimental results). 

-1 o7 1 OS 1 OS 

Ra 

Fig. 5. Average Nusselt number against apparent Rayleigh num- 
ber for stainless steel slab ; (theory vs. experimental results). 

Ri 

1 o7 1 o8 1 og 

Ra 

Fig. 6. Average Nusselt number against apparent Rayleigh num- 
ber for ceramic slab ; (theory vs. experimental results). 

are imbedded in the slab. The temperature rises in general 
in the upward direction. A few examples of the vertical 
boundary temperature variation Tb are listed in Table 2. 
The vertical temperature variations are about 40-50% of 
Tb- Tc (about 20% of T, - Tc) in the present exper- 
iments. The average boundary temperature is determined 
by taking the mean of the measured nine values. In Fig. 
I the nondimensional boundary temperatures obtained 
by our experiments are plotted together with the theor- 

Table 2. 
Vertical variations of Tb [“Cl for ceramic plate [k = 1.7 W m-’ 
K-‘1 

Ra TH Tc Tb (top) T,, (middle) Tb (bottom) 

7.9 x 10’ 31.9 19.8 26.0 24.8 24.2 
2.7 x 10s 51.1 20.9 34.7 31.6 29.0 
6.9 x lo8 73.8 25.6 47.6 42.5 38.8 
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Fig. 7. Averaged dimensionless solid-fluid boundary temperature as a function of (T ; theory (solid line) vs. experimental results (blank 
circles). 

etical cuNe for laminar convection given in Fig. 2. The 
two plots for small values of Q are taken from stainless 
steel plate, and the rest are from ceramic plate. Again 
the experimental data fall within 15% of the theoretical 
curve. 

4.2. Flow structure and temperature field in convecting 
water 

Flow structures and temperature fields in convecting 
water for a few representative cases were obtained via a 
flow visualization technique based on pH indicator 
method and thermocouple probe. The temperature 
measurements revealed a presence of three distinctive 
regimes (Fig. 8). Obviously a thermal boundary layer 
adjacent to a heated slab was evident, where a large 
horizontal temperature gradient was measured. A region, 
extending out horizontally from the edge of the vertical 
thermal boundary layer and vertically above the lower 
edge of the slab, was thermally stratified. The afore- 
mentioned two regions lay above a nearly isothermal 
body of cold water. The flow structure was visualized by 
a pH indicator method (Fig. 9). Streaks of dark-color 
released from three stainless steel wires show a main 
lateral flow toward a heated surface ; a thickness (or 
height) of the flow is roughly equal to the height of the 
slab. Above that four or five laterally advancing flows 
one above another with smaller velocities and changing 
their directions alternatively with height were observed. 
Below the main lateral flow it was found that water was 
essentially stagnant. A picture of flow and temperature 
field described above was independent of Rayleigh num- 
ber and slab materi.al. 

5. Conclusion 

A conjugate natural convection from a vertical slab has 
been studied analytically and experimentally. Assuming 

a=37 

I 

18 
L/ 

Fig. 8. Sketch of a steady temperature field in the water vessel 
(copper plate, Tb = 37”C, Ra = 1.48 x 108). Crosses indicate 
positions where the temperature measurements took place. 

a vertically-averaged slabfluid interface temperature, a 
simple 5th- or 4th-order polynomial equation is deduced 
for the unknown interface temperature, depending upon 
whether convecting flow is in laminar or turbulent 
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(a) t = 2 [min.] 

(b) t = 4 [min.] 

Fig. 9. Steady state convecting flow patterns visualized by pH 
indicator method for Ra = 1.1 x 10’ (copper plate) : elapsed 
times are (a) 2 min ; (b) 4 min. 

regime. The polynomial involves a single nondimensional 
parameter, which is made of the apparent Rayleigh 
number, slab to fluid thermal conductivity ratio and the 
slab aspect ratio. The solutions for the interface tem- 
perature are graphically presented as a function of this 
dimensionless parameter 0. The mean Nusselt number is 
then derived based on the obtained interface temperature. 
It should be noted that despite its approximate nature 
the analytical solution requires all the parameters present 
in the system and can be expected to work for a wide 
range of parameters. 

A series of experiments have been conducted using 
three different slab materials and water as a working 
fluid. The mean heat transfer rates measured exper- 
imentally are well compared with analytical predictions 
based on the one-dimensional theory. Flow visualization 
and temperature measurement reveals three distinctive 
regions, namely a boundary layer regime adjacent to a 
heated slab, a temperature stratified regime and a body 
of stagnate cold water. 
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